Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging

نویسندگان

  • Hao Jiang
  • Yong He
  • Xinxin Chen
  • Fei Liu
  • Yande Liu
چکیده

Hyperspectral imaging technology was employed to detect slight bruises on Korla pears. The spectral data of 60 bruised samples and 60 normal samples were collected by a hyperspectral imaging system. To select the characteristic wavelengths for detection, several chemometrics methods were used on the raw spectra. Firstly, principal component analysis (PCA) was conducted on the spectra ranging from 420 to 1000 nm of all samples. Considering that the reliability of the first two PCs was more than 90%, five characteristic wavelengths (472, 544, 655, 688 and 967 nm) were selected by the loading plot of PC1 and PC2. Then, each of the wavelength variables was considered as an independent classifier for bruised/normal classification, and all classifiers were evaluated by the receiver operating characteristic (ROC) analysis. Two wavelengths (472 and 967 nm) with the highest values under the curve (0.992 and 0.980) were finally selected for modeling. The classifying model was built by partial least squares discriminant analysis (PLS-DA) and the bruised/normal classification accuracy of the modeling set (45 damaged samples and 45 normal samples) and prediction set (15 damaged samples and 15 normal samples) was 98.9% and 100%, respectively, which is similar to that of the PLS-DA model based on the whole spectral range. The result shows that it is feasible to select characteristic wavelengths for the detection of slight bruises on pears by the methods combining the PCA and ROC analysis. This study can lay a foundation for the development of an online detection system for slight bruise detection on pears.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vis/NIR Hyperspectral Imaging for Detection of Hidden Bruises on Kiwifruits

Lü Q., Tang M.-j., Cai j.-r., Zhao j.-w., Vittayapadung S. (2011): Vis/NIR hyperspectral imaging for detection of hidden bruises on kiwifruits. Czech j. Food Sci., 29: 595–602. It is necessary to develop a non-destructive technique for kiwifruit quality analysis because the machine injury could lower the quality of fruit and incur economic losses. Bruises are not visible externally owing to the...

متن کامل

The Detection of Early-Maturing Pear's Effective Acidity Based on Hyperspectral Imaging Technology

The hyperspectral imaging technology is used to detect early-maturing pear’s effective acidity nondestructively, and effective prediction model is established. 145 pears’ hyperspectral images are obtained in the wavelength range of 400nm-1000nm. Total 145 pears are separated into the calibration set (77 samples) and prediction set (68 samples). Early-maturing pear’s effective acidity partial le...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Wavelength region selection and spectrophotometric simultaneous determination of naphthol isomers based on net analyte signal

Naphthol isomers were simultaneously and spectrophotometrically determined in wastewater, using a model based on net analyte signal (NAS). The calibration method used is a variation of the original hybrid linear analysis method as proposed by Goicoechea and Olivieri (HLA/GO). Owing to spectral interferences, the simultaneous determination of mixtures of naphthol isomers, using a spectrophotomet...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016